If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-14x-40=0
a = 9; b = -14; c = -40;
Δ = b2-4ac
Δ = -142-4·9·(-40)
Δ = 1636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1636}=\sqrt{4*409}=\sqrt{4}*\sqrt{409}=2\sqrt{409}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{409}}{2*9}=\frac{14-2\sqrt{409}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{409}}{2*9}=\frac{14+2\sqrt{409}}{18} $
| 3*(x+5)=13x | | 6x2+7x-49=0 | | 6k+5.5=k+16 | | 6|x+7|-1=23 | | x*1,65=4 | | w^=6-w | | 5x+1x=6x | | 1/3(y-1)+6=7/9(3y-3) | | 2^x=32 | | 2/3x-15=1/2x+15 | | 2x+4=(3x-x)+3 | | 5x2−10x=−2 | | x²-5x=0 | | 2/5+1/10=1/2n+2 | | -12=7k-5-8k | | 700–35w =450+15w | | 2x+4=3+3x | | 54x^2+3x-35=0 | | 10(0.4=0.5g)=5g | | 4+2x=3+3x | | .01x=38 | | 5x^2-10=4x+3 | | (2/3m)-(3/5m)=4 | | -2(-3-x)=6x | | 1/2(x-2)(x+6)=0 | | -8k-7k=15 | | 2x2-16x+64=16 | | x²-x+1/x²-2x+2=1/x²-9+14/x-3 | | (3x/5)-(x-3/2)=(x+2/3) | | 95=9/5c+32 | | -8k-7k=16 | | 3(1-7p)=8p= |